Sunday, 5 February 2017

3 Wochen Durchschnittlicher Prognoserechner

Weighted Moving Average Calculator Angesichts einer Liste sequentieller Daten können Sie den n-Punkt-gewichteten gleitenden Durchschnitt (oder den gewichteten gleitenden Durchschnitt) konstruieren, indem Sie den gewichteten Durchschnitt jedes Satzes von n aufeinanderfolgenden Punkten finden. Angenommen, Sie haben den geordneten Datensatz 10, 11, 15, 16, 14, 12, 10, 11, und der Gewichtungsvektor ist 1, 2, 5, wobei 1 auf den ältesten Term angewendet wird Der mittlere Term und 5 wird auf den jüngsten Term angewendet. Der gewichtete gleitende 3-Punkt-Durchschnitt beträgt 13,375, 15,125, 14,625, 13, 11, 10,875 Gewichtete gleitende Mittelwerte werden verwendet, um sequentielle Daten zu glätten, während sie bestimmten Begriffen mehr Bedeutung geben. Einige gewichtete Durchschnitte legen mehr Wert auf zentrale Begriffe, während andere für neuere Begriffe bevorzugen. Aktienanalysten verwenden häufig einen linear gewichteten n-Punkt-gleitenden Durchschnitt, in dem der Gewichtungsvektor 1, 2. n-1 ist. N ist. Sie können den rechner unten verwenden, um den gewichteten gewichteten Durchschnitt eines Datensatzes mit einem gegebenen Gewichtsvektor zu berechnen. (Geben Sie für den Taschenrechner Gewichte als kommagetrennte Liste von Zahlen ohne die und Klammern ein.) Anzahl der Begriffe in einem gewichteten n-Punkt gleitenden Durchschnitt Wenn die Anzahl der Begriffe in der ursprünglichen Menge d ist und die Anzahl der verwendeten Begriffe in Jeder Durchschnitt ist n (dh die Länge des Gewichtungsvektors ist n), dann wird die Anzahl der Ausdrücke in der gleitenden Durchschnittssequenz sein. Zum Beispiel, wenn Sie eine Folge von 120 Aktienkursen haben und einen 21-tägigen gewichteten rollenden Durchschnitt nehmen Der Preise, dann hat die gewichtete Rolling Average Sequenz 120 - 21 1 100 Datenpunkte. Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel zu berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der vorherigen 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte, um die tatsächlichen Datenpunkte. Moving Average Forecasting Einführung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer würde für Ihre nächste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde könnten für Ihre nächste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern könnten für Ihre nächste Test-Score Unabhängig davon vorhersagen Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Förderung an Ihre Freunde, Sie über-schätzen Sie sich und Figur, die Sie weniger für den zweiten Test lernen können und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden versuchen, die Eltern stärker unterstützen und sagen, quotWell zu sein, haben Sie ein so weit gekommen 85 und 73, so sollten Sie vielleicht Abbildung auf immer über eine (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger Party tat und waren nicht das Wiesel überall wedeln und wenn man viel mehr zu tun begann zu studieren Sie könnte eine höhere score. quot Beide Schätzungen tatsächlich gleitenden Durchschnitt Prognosen erhalten. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, sauer du all diese Leute eine Art haben auf Ihrem großen Geist Zerschlagung und Sie entscheiden sich für Ihre eigenen Gründe auch im dritten Test zu machen und eine höhere Punktzahl vor Ihrem quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Nun kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für einen m-Zeitraum durchschnittliche Prognose bewegen, wenn quotpast predictionsquot machen, feststellen, dass die erste Vorhersage in Periode m 1. Beide Probleme auftritt, wird sehr bedeutend sein, wenn wir unseren Code zu entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zähler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zähler 1 Accumulation 0 Bestimmung der Größe der historischen Array HistoricalSize Historical. Count für Zähler 1 Um NumberOfPeriods thesaurierend die entsprechende Anzahl von jüngsten zuvor Werte Accumulation Accumulation Historische beobachtet (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods der Code wird in der Klasse erklärt. Sie möchten die Funktion auf dem Arbeitsblatt platzieren, so dass das Ergebnis der Berechnung angezeigt wird, wo es wie folgt sein soll.


No comments:

Post a Comment